Delayed buckling and guided folding of inhomogeneous capsules.
نویسندگان
چکیده
Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pressure, they will ultimately buckle. This process can be strongly influenced by structural inhomogeneities in the capsule shells. We explore how the time delay before the onset of buckling decreases as the shells are made more inhomogeneous; this behavior can be quantitatively understood by coupling shell theory with Darcy's law. In addition, we show that the shell inhomogeneity can dramatically change the folding pathway taken by a capsule after it buckles.
منابع مشابه
A computational study of the mechanisms of growth-driven folding patterns on shells, with application to the developing brain
We consider the mechanisms by which folds, or sulci (troughs) and gyri (crests), develop in the brain. This feature, common to many gyrencephalic species including humans, has attracted recent attention from soft matter physicists. It occurs due to inhomogeneous, and predominantly tangential, growth of the cortex, which causes circumferential compression, leading to a bifurcation of the solutio...
متن کاملOsmotic buckling of spherical capsules.
We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckl...
متن کاملBuckling of spherical capsules.
We investigate buckling of soft elastic capsules under negative pressure or for reduced capsule volume. Based on nonlinear shell theory and the assumption of a hyperelastic capsule membrane, shape equations for axisymmetric and initially spherical capsules are derived and solved numerically. A rich bifurcation behavior is found, which is presented in terms of bifurcation diagrams. The energetic...
متن کاملNanodroplet activated and guided folding of graphene nanostructures.
We demonstrate by molecular dynamics simulations that water nanodroplets can activate and guide the folding of planar graphene nanostructures. Once the nanodroplets are deposited at selected spots on the planar nanostructure, they can act as catalytic elements that initiate conformational changes and help to overcome deformation barriers associated with them. Nanodroplets can induce rapid bendi...
متن کاملPattern formation in plants via instability theory of hydrogels
In this paper, we demonstrate how deformation patterns of leaves and fruits in growing and drying processes can be described via the inhomogeneous field theory. The distorted deformation of ribbed leaves and the ridge formation on fruit surfaces can be understood as the energy-minimizing mechanical buckling patterns. The swelling and de-swelling induced instabilities of various membrane structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 13 شماره
صفحات -
تاریخ انتشار 2012